

# **Crew Centered Display Concepts**

December 6, 2000

Louis J. Glaab Crew/Vehicle Integration Branch Airborne Systems Competency NASA Langley Research Center Hampton, VA 23681-2199 757-864-41159

E-mail: l.j.glaab@larc.nasa.gov



#### **Crew-Centered Display Concepts**



- Background info
  - Brief review of pre-HSR work
  - HSR involvement
- Current Work
  - SVS Retrofit assessment and analysis
  - DFW data analysis
  - EGE preparation
- Future Work
  - EGE deployment
  - Continued participation in the SVS program (at least through 2004)

#### **CCDC Background and Recent History**



- Referred to as the Cockpit Technology Branch (CTB) prior to 1993
  - Advanced pictorial display concepts
  - Flat Panel display media research
  - Pilot/machine interface work
- Became part of an Industry/NASA/Academia team known as eXternal Vision Systems (XVS) (1993 to 1999)
  - XVS team supported the Flight Deck element of the High Speed Research (HSR) program
    - Developed and tested the No-Droop Nose Concept cockpit
  - LaRC XVS group
    - Led many simulation and flight test evaluations
    - Established overall requirements for PXD and IFOV displays
    - Developed Surveillance Symbology system
  - Proved the feasibility of the No-Droop Nose Concept



#### XVS Basic Mission

- MD-11, B-747 Class operations, airfields, weather
- No Degradation in Workload
- Equivalent Safety (Goal: Significantly Improved Safety)
- Certifiable
- Pilot and Airline Manager Acceptable

# • Critical Operating Condition is Day VMC

- ATC not ultimately responsible for aircraft separation
- See to Follow and See to Avoid



## **HSR Flight Test Vehicles**



Crew Systems Peer Review - Synthetic Vision



# USAF Total In-Flight Simulator

NASA LaRC B-737 TSRV



#### **Early XVS Flight Tests**



- FL1 Explored issues regarding computer generated outside view with camera Primary XVS Display (PXD) views
  - NASA B-737
  - Visible spectrum and FLIR cameras
  - Computer generated terrain
- FL2 Established Horizontal Field of View (H-FOV) requirements
  - TIFS
  - Used window masking
- FL3 Evaluated conformal display and camera location issues
  - NASA B-737
- FL4/TIFS.3 Evaluated Surveillance Symbology and Guidance and Flight Control issues
  - TIFS
  - Single HDTV PXD
  - First test of Inboard Field of View display



### **FL5 Flight Test**



- Validated No-Droop Nose Concept cockpit
  - Full 50 deg V by 40 H FOV PXD
  - In-board Field of View display
  - PXD Eye-limiting resolution
- TIFS provided actual "look and feel" of flying a High-Speed Civil Transport
  - 6-DOF model simulated
  - Handling qualities evaluated during approach and landings
- Performed traffic encounters to test critical VMC operations
  - Validated Surveillance Symbology system
  - Proved Feasibility of No-Droop Nose Cockpit



#### **SVS-AVL**



- Transitioned to the Synthetic Vision Systems (SVS) element of AvSP during 1999
  - Became Crew-Centered
    Display Concepts (CCDC)
- Utilized HSR-configured TIFS vehicle for SVS kick-off flight research activity
  - Asheville, N.C.
  - Photo-realistic vs. generic terrain texturing
  - Early look at display size and FOV issues



#### **Current Work**



Crew Systems Peer Review - Synthetic Vision

- Focus on SVS retrofit issues
  - Head-Down display size and FOV requirements
  - Head-Up opaque HUD concepts
  - Terrain texturing issues
    - Generic vs. Photo-realistic
- Establish SVS Retrofit concept

COCKPIT TYPE RETROFIT APPROACH

Mechanical only HUD

Existing glass Existing displays (size-A/B, D)

Future cockpits New larger displays (size-X)

- Completed first round of testing
  - Asheville N.C. simulation and limited flight test
  - DFW simulation and ARIES flight testing







#### **Experimental Hardware for DFW research**



Crew Systems Peer Review - Synthetic Vision

#### SVS Research Display

- Large, 18.1" High-Brite LCD display with touchscreen and brightness control
- Displays A/B, D, X formats
- Capable of SXGA resolution
- Designed for easy in-flight removal

#### SVS Graphics Engine

- 2 Intergraph Zx1 PCs
  - Dual 800-MHz Processors
  - 1 Gig of RAM
- Wildcat 4110 Video board
  - 256 MB of Texture memory
- For R/C work: included Obsidian-2
- Provided capability to generate photorealistic terrain – on HUD and HDD
- Less than \$10,000 per PC!







Crew Systems Peer Review - Synthetic Vision

#### Size-D, 30 deg FOV, Generic-texture





Crew Systems Peer Review - Synthetic Vision

#### Size-D, 30 deg FOV, Photo-texture





Crew Systems Peer Review - Synthetic Vision

#### **Size A/B and Size-X Concepts**









Size X









Crew Systems Peer Review - Synthetic Vision

#### **Photo-textured HUD**





#### Crew Systems Peer Review - Synthetic Vision

# Average Field of View During Runway Change Average FOV <1,500 ft AGL (during runway change)





#### Next: Eagle/Vail

#### Crew Systems Peer Review - Synthetic Vision

# Runway 25

#### The other terrain extreme from DFW:

- Terrain-sensitive area
- Compare with DFW results
- Investigate SVS concepts to improve terrain awareness during RNP approaches and reduce Min Descent Alt. (MDA)
- Include Terrain Awareness and Warning
  System (a version of EGPWS) in evaluations

Runway 7



#### **Future CCDC Research Issues**



- Effective Synthetic Vision Presentation on Tactical Displays (PFD and HUD)
- SV information on Strategic Display (Navigation Display)
- Pictorial Scene Information
- Limited Visibility (down to Category III) SVS Operations at Type I runways (both departure and arrival operations)
- Integration of Surface Operations Display Concepts with Airborne Display Concepts
- Situation awareness (SA) issues
- Integration of SVS with TAWS
- SVS Integration with Enhanced Vision Sensors
- Human factors design issues for Flight Data information integration with SV scene
- Failure of information (Backup instrumentation/Reversionary modes)
- Utilization of Advanced Display Media
- Format of Traffic and Weather Portrayal on Tactical and Strategic 19
  Displays